OXYMAT 7 module

Overview

The function of the OXYMAT 7 module is based on the paramagnetic alternating pressure method and is used to measure oxygen in gases.

Benefits

Paramagnetic alternating pressure principle

- Small measuring ranges (0 to 0.5% or 99.5 to 100% O₂)
- Absolute linearity

Detector element has no contact with the sample gas

- · Applicable in the absence of corrosive sample gases
- Long service life

Physically suppressed zero point possible, e.g. in the measuring range 98% or 99.5% to 100% ${\rm O_2}$

Ex (p) for Zones 1 and 2 according to ATEX-/IECEx approval, introduction of flammable gases possible

Application

Application areas

- For boiler control in incineration plants
- In chemical plants
- For ultra-pure gas quality monitoring
- In environmental protection
- For quality control
- Purity control/air separator
- Versions for analyzing flammable and non-flammable gases or vapors for use in hazardous areas

Structure of high-pressure version, standard module, sample gas path with pipes

Design

Gae	nath
uas	paur

High-pressure version with optional pressure switch for monitoring reference gas pressure

Reference gas pressure

Sample gas pressure

With hoses

With pipes

Sample gas path

2 000 ... 4 000 hPa above sample gas pressure, but max. 5 000 hPa

500 ... 1 500 hPa (abs.) 500 ... 2 500 hPa (abs.) with internal pressure sensor 500 ... 3 000 hPa (abs.) with external pressure sensor With hoses or with pipes

Structure of high-pressure version, field module, sample gas path with pipes

Gas path plan, high-pressure version with optional pressure switch for monitoring reference gas pressure

1

Low-pressure version with external reference gas pump

Reference gas pressure

Sample gas pressure Sample gas path Reference gas path 100 hPa above the sample gas pressure (low-pressure version) for the connection of an external pump Atmospheric pressure ±50 hPa With hoses With hoses

Gas path plan, low-pressure with external reference gas pump, with hoses

OXYMAT 7 module

Mode of operation

Oxygen is highly paramagnetic. This outstanding property of paramagnetism is used as a physical measuring effect for oxygen analysis.

Oxygen molecules in an inhomogeneous magnetic field always move toward the higher field strength. This results in a higher oxygen concentration where the field strength is higher (higher oxygen partial pressure). If two gases with differing oxygen content are combined in a magnetic field, a (O_2 partial) pressure difference arises between them.

Since the measuring effect is always based on the difference of the oxygen content of the two gases, one refers to the sample and reference gases.

For measuring oxygen in the OXYMAT 7, the reference gas (N₂, O₂ or air) flows through two channels into the sample chamber (6). One of these partial flows enters the measuring chamber (7) in the area of the magnetic field. If the sample gas is O₂-free, the reference gas can flow out freely. If the sample gas does contain O₂, however, the oxygen molecules concentrate in the area of the magnetic field. The reference gas can then no longer flow off freely. An alternating pressure results between the two reference gas inlets. This pulsates in step with the magnetic field and depends on the oxygen concentration. This causes an alternating flow in the microflow sensor (4).

The microflow sensor consists of two nickel-plated grids heated to approximately 120°C, which, along with two supplementary resistors, form a Wheatstone bridge. The alternating flow results in a change in the resistance of the nickel-plated grids. The resulting offset in the bridge is a measure of the concentration of oxygen in the sample gas.

Because the microflow sensor is located in the reference gas flow, the measurement is not influenced by the thermal conductivity, the specific heat or the internal friction of the sample gas. Additionally, the microflow sensor is protected through this arrangement from corrosion caused by the sample gas.

Further information

The oscillating magnetic field (8) means that the basic flow at the microflow sensor is not detected. The measurement is, thus, independent of the module's operating position or the position of the sample chamber.

The sample chamber is directly in the sample path and has a small volume, and the microflow sensor is a low-lag sensor. As a result, extremely short response times are realized.

Vibrations at the installation site can interfere with the measured signal (e.g. large fluctuations in the output signal). This behavior can be compensated for by a second (optional) microflow sensor (10), which functions as a vibration sensor. Since large differences in density between the sample and reference gases further amplify the undesired influence of vibration, reference gas is channeled to both the compensation microflow sensor (10) and the sample microflow sensor (4).

The sample gases must be fed into the analyzers free of dust. Condensation in the sample chambers must be prevented. Therefore, the use of gas modified for the measuring task is necessary in most application cases.

Flowing reference gas prevents the microflow sensor from being damaged and maintains the measurement capability of the module.

- 1 Reference gas inlet
- 2 Restrictors
- 3 Reference gas channels
- 4 Microflow sensor for measured signal
- 5 Sample gas inlet
- 6 Sample chamber
- 7 Source of the paramagnetic measuring effect
- 8 Electromagnet with alternating current strength
- 9 Sample gas and reference gas outlet
- 10 Microflow sensor in the vibration compensation system (order variant)
- 11 Compensation circuit (optional)

OXYMAT 7, principle of operation

OXYMAT 7 module

Essential characteristics

Technical features

Depending on the reference gas, the physical zero point can be set between 0% and 100% oxygen.

- Smallest measuring spans (up to 0.5% O₂) possible
- Measuring ranges with physically suppressed zero points possible (e.g. 99.5% to 100%)
- Short response time
- · Low long-term drift
- Monitoring of reference gas pressure with reference gas connection 2 500 to 5 000 hPa (abs.) (option): reference gas pressure must be 2 000 ± 150 hPa higher than the sample gas pressure.

Features

- Internal pressure sensor for correction of pressure variations in sample gas in the range from 500 to 2 500 hPa (absolute)
- External pressure sensor only with piping as the gas path can be connected for correction of variations in the sample gas pressure up to 3 000 hPa absolute (option)
- Monitoring of reference gas (option)
- Analysis part with flow-type compensation circuit as an order variant for reducing the vibration impact at the installation site
- For sample gas path with hoses: Connection cable to the pressure sensor with hoses
- · Hardware adapted to application
- Customer-specific analyzer options such as:
- Clean for O₂ service (specially cleaned gas path)
 Kalrez-6375 seals

Reference gases

Measuring range	Recommended reference gas	Reference gas connection pressure	Comments	
0 to vol.% O ₂	N ₂	2 000 4 000 hPa above sample gas	The reference gas flow is set automati-	
to 100 vol.% O_2 (suppressed zero point with full-scale value 100 vol.% O_2) $$	O ₂	pressure (max. 5 000 hPa absolute)	cally to 5 10 ml/min (up to 20 ml/n with flow-type compensation branch	
Around 21 vol.% $\rm O_2$ (suppressed zero point with 21 vol.% $\rm O_2$ within the measuring span)	Air	100 hPa with respect to sample gas pressure, which may vary by max. 50 hPa around the atmospheric pres- sure		

Table 1: Reference gases for OXYMAT 7

OXYMAT 7 module

Correction of zero-point error/cross-sensitivities

Accompanying gas (concentration	Zero point deviation in vol.% O ₂	Inert gases	
	absolute	Helium He	+0.33
	0.40	Neon Ne	+0.17
Ethane C_2H_6	-0.49	Argon Ar	-0.25
Ethene (ethylene) C_2H_4	-0.22	Krypton Kr	-0.55
Ethine (acetylene) C_2H_2	-0.29	Xenon Xe	-1.05
1.2 butadiene C_4H_6	-0.65	Inorganic gases	
1.3 butadiene C ₄ H ₆	-0.49	Ammonia NH ₂	-0.20
n-butane C ₄ H ₁₀	-1.26	Hydrogen bromide HBr	-0.76
iso-butane C ₄ H ₁₀	-1.30	Chlorine Cla	-0.94
1-butene C ₄ H ₈	-0.96	Hydrogen chloride HCI	-0.35
iso-butene C ₄ H ₈	-1.06		-0.23
Dichlorodifluoromethane (R12) CCl_2F_2	-1.32	Hydrogen fluoride HF	+0.10
Acetic acid CH ₃ COOH	-0.64	Hydrogen iodide HI	-1.19
n-heptane C ₇ H ₁₆	-2.40	Carbon dioxide CO ₂	-0.30
n-hexane C ₆ H ₁₄	-2.02	Carbon monoxide CO	+0.07
Cyclo-hexane C ₆ H ₁₂	-1.84	Nitrogen oxide NO	+42.94
Methane CH ₄	-0.18	Nitrogen N ₂	0.00
Methanol CH ₃ OH	-0.31	Nitrogen dioxide NO ₂	+20.00
n-octane C ₈ H ₁₈	-2.78	Sulfur dioxide SO ₂	-0.20
n-pentane C ₅ H ₁₂	-1.68	Sulfur hexafluoride SF ₆	-1.05
iso-pentane C ₅ H ₁₂	-1.49	Hydrogen sulfide H ₂ S	-0.44
Propane C ₃ H ₈	-0.87	Water H ₂ O	-0.03
Propylene C ₃ H ₆	-0.64	Hydrogen H ₂	+0.26
Trichlorofluoromethane (R11) CCl ₃ F	-1.63		
Vinyl chloride C ₂ H ₃ Cl	-0.77		
Vinyl fluoride C ₂ H ₃ F	-0.55		
1.1 vinvlidene chloride C ₂ H ₂ Cl ₂	-1.22		

Table 2: Zero point error due to diamagnetism or paramagnetism of some accompanying gases with reference to nitrogen at 60 °C und 1 000 hPa absolute (according to IEC 1207/3)

Conversion to other temperatures:

The deviations from the zero point listed in Table 2 must be multiplied by a correction factor (k):

- with diamagnetic gases: k = 333 K / (ϕ [°C] + 273 K)
- with paramagnetic gases: k = [333 K / (ϕ [°C] + 273 K)]²

All diamagnetic gases have a negative deviation from zero point.

OXYMAT 7 module

Technical specifications			
The technical specifications are	e based on the definitions of DIN	Measured-value drift	
EN 61207-1.		At the zero point	$\leq \pm 0.5\%$ of the smallest span/month or $\leq \pm 50$ ypm $\Omega_{\rm c}$ /month whichever is
Unless specified otherwise, the	data listed below relates to the		greater
		 For span gas 	$\leq \pm 0.5\%$ of the current measuring span/month or $\leq \pm 50$ ypm Q ₂ /month
Ambient temperature	25 °C		whichever is greater
Atmospheric pressure	Atmospheric (approx. 1 000 hPa)	Repeatability	
Sample gas flow	0.6 l/min (or Nl/min)	 At the zero point 	$\leq \pm 0.5\%$ of the smallest measuring span/month or $\leq \pm 50$ vpm O ₂ /month.
Reference gas	Nitrogen	_	whichever is greater
Site of installation	Vibration- and impact-free	• For span gas	$d \le \pm 0.5\%$ of the current measuring span/month or $\le \pm 50$ vpm O ₂ , which- ever is greater
General information		Linearity error with dry ambient air ¹⁾	< 0.1%
Weight	Approx. 5.5 kg (standard version)	Influencing variables	
Measuring ranges		Ambient temperature	
Number of measuring ranges	Max. 4; parameters can be assigned freely	 Deviation at zero point 	\leq 0.5% of the smallest measuring span / 10 K or \leq 50 vpm O ₂ /10 K, whichever is greater
Parameters can be assigned in the		 Deviation of the span gas 	$\leq 0.5\%$ of the current measuring span
 Smallest possible measuring spans 	0.5%, 1%, 2% or 5% O ₂		/ 10 K or \leq 50 vpm O ₂ /10 K, which- ever is greater
Largest possible measuring span	100% O ₂	Sample gas pressure	
Gas inlet conditions		Deviation at zero point	\leq 0.2% of the smallest measuring
Sample gas pressure			span / 1% pressure variation or \leq 50 vpm O ₂ /1% pressure variation, which-
Standard devices with hoses Standard devices with hoses and	500 1 500 hPa (abs.)		ever is greater
ext. RG pump	Atmospheric pressure \pm 50 hFa	 Deviation of the span gas 	\leq 0.2% of the current measuring span / 1% pressure variation or \leq 50 vpm
 Standard devices with pipes 	500 3 000 hPa (abs.); briefly <		O ₂ /1% pressure variation, whichever
• Field module	5 000 fil a (abs.)	Sample gas flow	is greater
- For non-combustible gases	500 2 500 hPa (abs.)	Deviation at zero point	≤ 1% of smallest measuring span per
- For combustible gases up to gas	800 1 100 hPa (abs.)		0.1 l/min change in flow or \leq 50 vpm
explosive			the permissible flow range (0.3 to 1 l/
Reference gas pressure		 Deviation of the span das 	min), whichever is greater
High-pressure connection	2000 hPA above sample gas pres-	- Deviation of the span gas	0.1 l/min change in flow or \leq 50 vpm
	pressure range 2500 to 5000 hPa,		O_2 per 0.1 l/min change in flow within the permissible flow range (0.3 to 1 l/
• Low produce connection with outer	abs.)		min), whichever is greater
 Low-pressure connection with exter- nal reference gas pump 	Too nea above sample gas pressure	Accompanying gases	Zero point deviation (cross-sensitiv-
Pressure drop between sample gas	< 100 hPa at 1 l/min		EN 61207-3
inlet and sample gas outlet		Supply voltage	< 0.1% of the current measuring span
Sample gas flow	18 60 l/h (0.3 1 l/min)		(within the nominal range of use)
Sample gas temperature	0 60 °C	Electrical inputs and outputs	
Sample gas humidity (rel. humidity)	< 90% (condensation inside the gas path is to be avoided)	Analog and digital interfaces	See base unit
Sample chamber temperature		Gas connections	
Standard version	Approx. 72 °C	Connection fittings	Pipe connection with 6 mm outer diameter
Time response		Climatic conditions	
Warm-up period at room temperature	< 2 h	Storage and transport	-3070 °C
Response characteristics		- Permissible ambient temperature ²⁾	0 50 °C
• Display delay T_{90} with an electronic	\leq 1.9 s; \leq 2.4 s (field module includ-	Relative humidity (RH) during storage.	< 90% (condensation from the
gas flow of 1 NI/min.	ing name arrestor)	transport or operation	installed components is to be
Dead time T ₁₀	\leq 1.1 s; < 1.6 s (field module)	1)	
Measuring response		existing humidity of the oxygen cor	than 20.95% O ₂ (literature value) since the tis decreased relatively.
Output signal fluctuation with static	$\leq \pm 0.5\%$ of smallest measuring span	²⁾ Restriction for installing together w	ith an ULTRAMAT 7 module: 545 °C
noise suppression of 5% / 10 s	= 6σ value or 0.333% = 2σ value),		
	with vibration compensation acti- vated: < 1.5 times the value		
Detection limit	< 1% of smallest measuring span		
	according to nameplate (with vibra-		
	times the value)		

1

Extractive continuous process gas analysis

SIPROCESS GA700

OXYMAT 7 module						
Only others and and airs a data			A			
Selection and ordering data).		O a mart h a
For measurement of oxygen			7 /MB3020-	0.		combined
7 Click on the Article No. for the online	configuration in the PIA Life Cw	ole Portal				
Module version						
Standard module (for rack mounted and	t wall applosure)			0		
Standard module for bezerdeue zene (f				0		
Standard Module for Hazardous zone (in	or fack mounted and wall enclos	sure)		2		
Fleid module for fleid housing EX a with	out purging gas connections			4		4
Reference gas pressure						
Low-pressure version 100 hPa (for the c	connection of an external pump;	without pressure switch)		Α		
High pressure (2 000 4 000 hPa abov	e sample gas pressure)			С		
High pressure (2 000 4 000 hPa abov	ve sample gas pressure), with pr	essure switch		D		
Smallest possible measuring span						
0.5 %				в		В
1 %				С		C C
2 %				D		
5 %				E		
Gas path						
Material of gas path	Material of sample chamber	Material of seal				
Hose made of FKM (Viton)	Stainless steel (1.4571)	FKM (Viton)		0		0 0
Pipe made of stainless steel (1.4404)	Stainless steel (1.4571)	FKM/Ex: Kalrez (6375)		1		1
Pipe made of Hastelloy C22	Hastelloy C22	Kalrez (6375)		2		2
Vibration compensation						
Without					0	Ó
With					1	
Version			_			
Standard					0	

Selection and ordering data		
Additional versions	Order code	
Add "-Z" to Article No. and specify Order code		
Settings		
Kalrez (6375) seals in sample gas path	B04	
Clean for O ₂ service (specially cleaned gas path)	B06	
Measuring range indication in plain text, if different from the default setting	Y11	
Exclusively for measuring non-toxic sample gases	Y16	
Base unit module assignment number	D00 D99	

Ordering example

OXYMAT 7 module installed in wall enclosure 7MB3000-3CX00-1AA0-Z+D02 7MB3020-0CE00-0AA0-Z+D02

OXYMAT 7 module and ULTRAMAT 7 installed in rack unit

enclosure 7MB3000-0CB00-1AA0-Z+D05 7MB3020-0CE00-0AA0-Z+D05 7MB3010-0CA10-0AA0-Z+D05

OXYMAT 7 module and wall enclosure supplied separately 7MB3000-3CX00-1AA0 7MB3020-0CE00-0AA0

OXYMAT 7 module

Circuit diagrams

Gas connections

4 Reference gas inlet

Gas connections for sample gas inlet and outlet, reference gas: Fittings, 6 mm pipe diameter

Gas connections of the field module

Wall-mounted device

Wall-mounted device, bottom