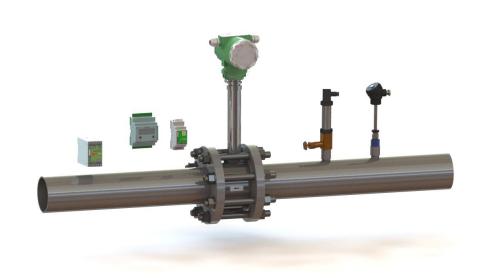
УЗЕЛ УЧЕТА ЭМИС-ЭСКО 2210.00.00 РЭ 21.12.2017 V 1.0.8

УЗЕЛ УЧЕТА ЭМИС-ЭСКО 2210

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Высокая надежность


Использование в системе ППД

Стабильность метрологических характеристик

Межповерочный интервал 4 года

Аттестованные алгоритмы расчета

Высокая ремонтопригодность

ОБЩАЯ ИНФОРМАЦИЯ

Настоящая инструкция распространяется на узел учета **ЭМИС-ЭСКО 2210** (в дальнейшем узел учета) и содержит в себе указания по применению, монтажу, техническому обслуживанию, транспортировки и хранению узла учета.

ЗАО «ЭМИС» оставляет за собой право вносить изменения в конструкторскую документацию узла учета, не ухудшающие их потребительских качеств, без предварительного уведомления.

Перечень документов, на которые даны ссылки в настоящем руководстве, приведен в *Приложении А*.

Перед началом работы следует внимательно изучить настоящую Инструкцию, а также Руководства по эксплуатации на отдельные изделия узла учета. Перед началом установки, использования или технического обслуживания узла учета убедитесь, что Вы полностью ознакомились и поняли содержание Инструкции. Это условие является обязательным для обеспечения безопасной эксплуатации и нормального функционирования узла учета.

ВНИМАНИЕ!

Любое использование материала настоящего издания, полное или частичное, без письменного разрешения правообладателя запрещается.

СОДЕРЖАНИЕ

1 ОПИСАНИЕ И РАБОТА	1.1 Назначение и область применения	4
	1.2 Состав узла	5
	1.3 Техническая характеристика	8
	1.4 Устройство и работа	13
	1.5 Маркировка и пломбирование	13
	1.6 Упаковка	13
	1.7 Комплект поставки	14
	1.8 Карта заказа	15
2 ИСПОЛЬЗОВАНИЕ ПО	2.1 Указания мер безопасности	18
НАЗНАЧЕНИЮ	2.2 Требования к монтажу	19
	2.2 Монтаж узла учета	20
	2.3 Электрическое подключение	24
	2.4 Пуско-наладка	26
3 РЕГЛАМЕНТНОЕ ОБСЛ	УЖИВАНИЕ	27
4 ПОВЕРКА		27
5 ТРАНСПОРТИРОВАНИЕ	Е И ХРАНЕНИЕ	28
6 УТИЛИЗАЦИЯ		28
ПРИЛОЖЕНИЯ	А – Перечень ссылочных документов	29
	Б – Габаритные размеры узла учета	30
	В – Схема электрических подключений	31

1. ОПИСАНИЕ И РАБОТА

1.1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Узел учета ЭМИС-ЭСКО 2210 предназначен для коммерческого и технологического учета насыщенного и перегретого пара; попутного нефтяного газа (ПНГ), природного газа, сжатого воздуха и некоторых технических газов. Комплекс применим для систем поддержания пластового давления (ППД). ЭМИС-ЭСКО 2210 используется для регистрации параметров контролируемой среды, измерения объемного расхода, расчета массового расхода и количества тепловой энергии среды в отдельных трубопроводах, при рабочих условиях, а также для приведения измеренных значений расхода (объема) среды к стандартным условиям.

Область применения узла учета «ЭМИС – ЭСКО 2210» – измерительные системы коммерческого и технологического учета, автоматизированного контроля и управления технологическими процессами на промышленных предприятиях, теплопунктах, теплостанциях, газораспределительных станциях, нефтегазодобывающих предприятиях в условиях круглосуточной эксплуатации.

1.2 СОСТАВ УЗЛА

1.2.1 Базовая комплектация узла учета

Состав комплекса зависит от конкретного технологического процесса. В базовую комплектацию узла учета (*таблица 1.1.*) входят датчики (измерительные преобразователи, далее - ИП) расхода, давления, температуры; вычислитель (преобразователь расчетно-измерительный); блок питания; закладные конструкции и комплект монтажных частей (КМЧ).

В качестве закладных конструкций используются:

- бобышки для монтажа датчика давления и температуры на трубопровод;
- клапанный блок для датчика давления;
- защитная гильза для датчика температуры;
- устройство для отбора давления.

Таблица 1.1 – Базовая комплектация узла учета ЭМИС-ЭСКО 2210*

Наименование	Кол.	Примечание
Измерительные преобразователи		
Преобразователь расхода вихревой ЭМИС-ВИХРЬ с комплектом монтажных частей	14	Исполнение согласно заказу
Измерительный преобразователь давления с унифицированным выходным сигналом 4-20 мА (поддержкой НАRT-протокола).	14	Исполнение согласно заказу. С заводской настройкой на поддипазон
Преобразователь температуры с выходным сигналом по сопротивлению 4-х проводная схема или с унифицированным выходным сигналом 4-20 мА	18	Исполнение согласно заказу.
Вычислитель		C
Преобразователь расчетно-измерительный ТЭКОН-19	1	С настройкой параметров согласно заказу
Блок питания		
ЭМИС-БРИЗ 90	14	Согласно заказу
Комплект монтажных частей		
Бобышка для монтажа датчика давления ЭМИС-ВЕКТА 1130***	14	Поставляется при отсутствии в комплекте отборного устройства
Бобышка для монтажа датчика температуры ЭМИС – BEKTA 1330***	14	Не поставляется при измерении высокотемпературных сред
Защитная гильза цельноточеная (цилиндрическая или коническая) ЭМИС-ВЕКТА 1300	14	
Отборное устройство ЭМИС-ВЕКТА 1120 в комплекте с БКН-1 или БКН-2.	14	Поставляется для измерения высокотемпературных сред (свыше 100 °C)
Клапанный блок БКН одно-, двух- или трехвентельный	14	Не поставляется при измерении высокотемпературных сред
Комплект эксплуатационной документации		
Руководства по эксплуатации на все средства измерения, входящие в состав узла согласно заказу	-	Согласно заказу
Руководство по эксплуатации ЭМИС-ЭСКО2210.00.00 РЭ	1**	
Паспорт ЭМИС-ЭСКО2210.00.00 ПС	1**	
Методика поверки МП 32-221-2011	1**	По заказу
Сертификаты соответствия, Сертификаты на материал, Свидетельства об утверждении средства измерения с приложением***		Согласно заказу

Примечание: * В состав узла могут быть включены другие типы измерительных преобразователей, которые по своим техническим характеристикам не уступают датчикам, приведенных выше.

- ** Один экземпляр на узел.
- *** При поставке узла в комплекте с измерительными участками, не входят в состав комплекса.
- **** Сертификат соответствия ТР ТС 012 с Ех приложением на СИ, устанавливаемые во взрывоопасную зону, и взрырозащищенные кабельные вводы; Сертификат соответствия ТР ТС 004, ТР ТС 020 (на контроллеры, адаптеры, блоки питания); Свидетельство об утверждении типа СИ с приложением на все средства измерения, входящие в комплект узла учета; Сертификаты на материалы.

1.2.2 Дополнительная комплектация узла учета Кроме базовой комплектации возможны другие варианты комплектации узла учета. По заказу потребителя узел может быть укомплектован дополнительным оборудованием. Перечень дополнительной комплектации в зависимости от условий применения приведен в *таблице 1.2.*

По типоразмеру, вихревой преобразователь расхода выбирается исходя из требуемого диапазона измерения расхода среды. Если условный диаметр датчика расхода не совпадает с типоразмером расходомера в месте установки, рекомендуется приобрести измерительные участки. Бобышки, входящие в базовую комплектацию узла учета, входят в состав измерительных участков и приварены к трубопроводу в посадочные отверстия. Также, для установки датчика температуры на малые Д_у требуется расширение диаметра трубопровода до требуемой величины (конический переход).

Если невозможно выполнить требования по длинам прямых участков до и после места установки датчика расхода, необходимо произвести монтаж выпрямителя потока в трубопровод, который позволяет уменьшить длину входного участка до 8 $Д_{\rm v}$.

Если необходим беспроводной метод передачи данных к ПК, то в состав входит контроллер К-105, который служит для сбора и передачи информации через сеть GSM с контроллера ТЭКОН-19.

Если необходимо обеспечить возможность подключения одного или нескольких приборов к ТЭКОН-19, объединенных промышленной сетью RS-485, то в состав узла включен адаптер АИ-80. Для подключения ТЭКОН-19 к существующей диспетчерской системе по протоколу Modbus RTU, контроллеру или промышленной сети используется устройство согласования протоколов УСП-78-03.

Если необходимо подключить преобразователь ТЭКОН-19 к стандартной вычислительной сети Ethernet 10/100 для сбора и передачи информации, то в комплект узла учета входит контроллер К-104.

Если есть необходимость в установке регистрирующей и функциональной аппаратуры на DIN-рейку в настенный шкаф, то в комплектацию узла учета может входить монтажный шкаф настенного монтажа.

Если необходимо установить контролеры и функциональную аппаратуру на DIN-рейку, а сам узел учета «под ключ», то в состав узла учета может входить шкаф трубный («антивандальный»), с двумя отсеками для всего комплекса.

Если установка контрольно-измерительной и функциональной аппаратуры осуществляется в условиях, отличающихся от условий эксплуатации на приборы, то по заказу поставляется обогреваемый трубный шкаф.

Если необходимо установить узел во взрывоопасной зоне, все датчики, входящие в состав узла должны иметь взрывозащищенное исполнение, а в состав включаются коробка взрывозащищенная и барьеры искрозащиты.

Также, по дополнительному заказу, в комплекте поставляется соединительный кабель для подключения всей контрольно-измерительной аппаратуры.

Таблица 1.2 – Дополнительная комплектация узла учета

Наименование	Наименование Условия применения		
	І ЕКТ МОНТАЖНЫХ ЧАСТЕЙ	Обозначение	
Измерительные участки	Диаметр трубопровода не совпадает с типоразмером расходомера	УИ-200	
Струевыпрямитель	Невозможно выполнить рекомендации по длинам прямых участков	ЭМИС-ВЕКТА 1200	
N	ЮНТАЖНЫЙ ШКАФ		
Монтажный шкаф КИП	Для установки контроллеров, блоков питания и другой функциональной аппаратуры	По заказу	
Шкаф антивандальный	Для установки узла учета "под ключ" совместно с КИП	ШТ 000.000.000	
Шкаф обогреваемый трубный	Эксплуатация узла в суровых зимних условиях	ШТО 000.000.000	
Шкаф в шкафу	Для установки оборудования при высоких температурах измеряемой среды	ШШ.000.000.000	
УС	СТРОЙСТВА СВЯЗИ*		
Контроллер К-104	Локальная вычислительная сеть Ethernet	K-104	
Контроллер GPRS/GSM	Беспроводной метод передачи	K-105	
Адаптер АИ-80	Через интерфейс RS485 (Преобразование протокола магистрали CAN в протокол FT1.2)	АИ-80	
Устройство согласования протоколов УСП-78	Подключение ТЭКОН-19 к существующей диспетчерской системе, контроллеру или промышленной сети по протоколу Modbus RTU	УСП-78-03	
БАР	ЬЕРЫ ИСКРОЗАЩИТЫ		
Барьер искрозащиты БИС-А-	Использование узла вида	БИС-А-107-Ех**	
Ех (серия 100)	Exib, Exia во взрывоопасной зоне	БИС-А-110-Ех***	
		БИС-А-111-Ех	
КОРОБКА ВЗРЫВОЗАЩИЩЕННАЯ			
Коробка взрывозащищенная КРВ-100	Использование узла вида Exd во взрывоопасной зоне	KPB-100d	
СОЕД	ИНИТЕЛЬНЫЙ КАБЕЛЬ		
Кабель соединительный	Подключение контрольно- измерительной аппаратуры для обеспечения работоспособности узла	МКЭШ 5х0,5, экранированный	

Примечание:

^{*} Совместно с контроллерами для передачи данных на верхний уровень, поставляется дополнительный блок питания ЭМИС-БРИЗ 90-2-24-100-DIN.

^{**} Поставляется совместно с ТПТ, ТСПТ. При комплектации узла ТСПУ, не входит в состав.

^{***} Для Метран ТСПУ-270 используется БИС Корунд-М4.

1.3 ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

1.3.1. Измеряемая среда

Измеряемая среда узла учета:

- природный; попутный нефтяной газ (ПНГ), добываемый и собираемый газонефтедобывающими организациями и вырабатываемый газонефтеперерабатывающими заводами;
- вода, водные растворы и другие жидкости, в том числе загрязненные и смеси жидкостей;
- насыщенный или перегретый пар;
- сжатый воздух, вырабатываемый компрессорами, на предприятиях нефтяной, нефтеперерабатывающей, металлургической, химической, пищевой, медицинской и других отраслях промышленности;
- чистые и загрязненные газы технические газы, применяемые в промышленности;
- вода, закачиваемая в нагнетательные скважины систем ППД на нефтяных месторождениях для поддержания пластового давления в процессе добычи.

1.3.2. Измеряемые параметры

Параметры, измеряемые узлом учета:

- объемный расход (объем);
- массовый расход (масса);
- температура среды;
- давление среды;
- количество тепловой энергии.

1.3.3. Краткое описание технических характеристик условий эксплуатации

и

Таблица 1.3 — Технические характеристики и условия эксплуатации узла учета ЭМИС-ЭСКО 2210

Характеристика	Значение
Диаметр условного прохода, мм	
для полнопроходного преобразователя расхода	15 / 25 / 32 / 40 / 50 / 65 / 80/ 100/ 125 / 150/ 200/ 250/ 300
для погружного преобразователя расхода	350/ 400/ 450/ 500/ 600/ 700/ 800/ 900/ 1000/ 1100/ 1200/ 1300/ 1400/ 1500/ 1600/ 1800/ 2000
Давление измеряемой среды, МПа	1,6; 2,5; 4,0; 6,3; 15; 20
Температура измеряемой среды	от -40°С до +100°С от -40°С до +250°С от -40°С до +320°С от -40°С до +460°С
Вязкость измеряемой среды	не более 7 мПа∙с
Интерфейс передачи данных*: встроенный интерфейс вычислителя локальная вычислительная сеть беспроводная передача данных интерфейс	RS – 232 (USB)/ CAN- BUS Ethernet GPRS/GSM RS-485
Напряжение питания	(220^{+22}_{-33}) В сети переменного тока, с частотой (50±1) Гц

Атмосферное давление

от 84 до 106,7 кПа

Температура окружающей среды:	
для измерительных преобразователей	от -40 °C до +70 °C
для расчетно-измерительного преобразователя и функциональной аппаратуры	от -10 °C до +50 °C

Относительная влажность, %, не более (без конденсации влаги, при температуре 35 °C)

для измерительных преобразователей 95±3%

для расчетно-измерительного

преобразователя и функциональной 80±3%

аппаратуры

Защита от окружающей среды:	
измерительные преобразователи	не хуже IP65 по ГОСТ 14254
для расчетно-измерительного преобразователя и функциональной аппаратуры	не хуже IP20 по ГОСТ 14254
Взрывозащищенное исполнение измерительных преобразователей	Exd, Exib, Exia

Интервал между поверками 4 года

Срок службы не менее 12 лет

Габаритные размеры см. *Приложение Б*

Примечание:* Возможно использование другого интерфейса передачи данных по спец. заказу.

Узлы учета в зависимости от измеряемой среды разделяются на классы точности, приведенные в **таблице 1.4**. Класс точности обусловлен классом точности всех приборов и устройств, входящих в состав комплекса.

1.3.4. Класс точности узла учета

Таблица 1.4 – Классы точности узла учета

Измеряемая среда	Класс точности
Жидкость и водные растворы	2,0 / 3,0 / 4,0 / 5,0
Газ / пар	2,0/ 3,0 /4,0 / 5,0

1.3.5 Пределы допускаемых погрешностей измерительных преобразователей и ТЭКОН—19

Пределы допускаемой относительной погрешности расчета ТЭКОН–19:

- расхода, объема, массы и количества газов и газовых смесей, приведенных к стандартным условиям ($\delta_B(V)/\delta_B(M)$), %.....± 0,1;
- расхода, объема и массы жидкостей и водяного пара $(\delta_{\!B}\,(V)\!/\,\delta_{\!B}\,(M)),\,\%$ ± 0,1; количества тепловой энергии среды $(\delta_{\!B}(Q)),\,\%$ ± 0,15.

Пределы допускаемых погрешностей преобразования контроллером сигналов первичных преобразователей:

_	температуры ($\Delta_B(t)$)	± 0,1°C;
_	давления (_{Ув} (Р))	± 0,13%.

Ниже приведены метрологические характеристики измерительных преобразователей по классу точности и относительной или абсолютной погрешности измерения.

В ЭМИС-ЭСКО 2210 используются датчики расхода класса точности А и Б. Пределы допускаемой относительной погрешности измерения по частотному выходному сигналу в зависимости от класса точности приведены в *Таблице 1.5.*

Таблица 1.5 — Пределы допускаемой относительной погрешности измерения датчика расхода

Тип расходомера	Измеряемая среда	Α	Б
ЭВ - 200	Жидкость	± 0,5	± 1,0
	Газ и пар	± 1,0	± 1,5
ЭВ-205	Жидкость	± 1,5	± 2,0
	Газ и пар	± 2,5	± 3,0

Погрешности измерительных преобразователей давления и температуры приведены в ЭД на соответствующее изделие.

1.3.6 Относитель ная погрешность стизмерения объема среды, приведенного к стандар-где тным условиям

Относительную погрешность измерения объема среды, приведенного к стандартным условиям $(\delta(V))$, определяют по формуле:

$$\delta(V) = \sqrt{(\delta G)^2 + (\delta t)^2 + (\delta P_{DOJH})^2 + \delta (V)^2},$$
 (1)

 $\delta(G)$ – допускаемая относительная погрешность датчика расхода при измерении расхода жидкости или газа в рабочих условиях, определяемая **по таблице 1.5** настоящего руководства.

 δ (*t*) – относительная погрешность измерения температуры, определяемая по формуле (3), %;

 $\delta \left(P_{\text{полн}} \right)$ – относительная погрешность измерения давления, определяемая по формуле (5);

 $\delta_B(V)$ — предел допускаемой относительной погрешности контроллера при расчете количества жидкости или газа, %, *см.п. 1.3.5.*

1.3.6.1 Абсолютная и относительная погрешности измерения температуры

Абсолютную погрешность измерения температуры (Δ (t)), определяют по формуле:

$$\Delta(t) = \sqrt{\Delta_B(t)^2 + \Delta_\Pi(t)^2} , \qquad (2)$$

где $\Delta_{\Pi}(t)$ – предел допускаемой абсолютной погрешности измерительного преобразователя температуры, °C;

 $\Delta_{B}(t)$ — предел допускаемой абсолютной погрешности контроллера при измерении температуры, °C (*см п. 1.3.5*)

В узлах учета ЭМИС-ЭСКО 2210 применяются термопреобразователи сопротивления ТПТ-1-3, с классом точности А.

Пределы допускаемой абсолютной погрешности информационного канала датчика температуры с классом точности A, $\Delta_{\Pi}(t)$ \pm (0,15+0,002·|t|) °C, где ·|t| - абсолютное значение температуры.

Относительная погрешность измерения температуры, определяется по формуле:

$$\delta(t) = |\Delta(t)/((t+273,15^{\circ}C)| \cdot 100\%), \tag{3}$$

где $\Delta(t)$ – абсолютная погрешность измерения температуры, определяемая по формуле (2), °C;

t – значение температуры измеряемой среды, °C,

1.3.6.2 Относитель ная погрешность измерения давления Основную относительную погрешность измерения значений давления $(\delta(P))$ определяют по формуле:

$$\delta(P) = \frac{P_{\text{max}}}{P_{\text{min}}} \cdot \sqrt{\gamma_{\Pi}(P)^2 + \gamma_B(P)^2} , \qquad (4)$$

где $\gamma_{\Pi}(P)$ – предел допускаемой основной приведенной погрешности измерительного преобразователя давления (PЭ на соответствующий преобразователь давления), %.

 P_{min} , P_{max} — нижний и верхний пределы диапазона измерения давления в одинаковых единицах измерений;

 $\gamma_{\mathcal{B}}(P)$ — предел допускаемой приведенной погрешности контроллера при измерении давления и разности давлений, %, **см.п. 1.3.5.**

Дополнительная погрешность датчика давления АИР y_7 , вызвана изменением температуры окружающего воздуха от нормальной (23±2) °C. Значения на каждые 10 °C изменения температуры приведены в РЭ на соответствующий датчик давления. Для того, чтобы исключить дополнительную погрешность, необходимо устанавливать узел в отапливаемом помещении, в обогреваемых шкафах ШТО 000.000.000, либо помещать датчик давления в обогреваемые термочехлы. Дополнительные погрешности преобразователя давления, вызванные изменением атмосферного давления, влажности смотрите в руководстве по эксплуатации на АИР.

1.3.7 Относитель ная погрешность измерения массы пара (жидкостей)

Относитель

погрешность

паровых

измерения тепловой

теплоснабжения

1.3.8

иизаэнс

систем

ная

Относительную погрешность измерения значений давления $(\delta(P))$ определяют по формуле:

$$\delta(P_{\text{полн}}) = \delta(P) + \gamma_T \tag{5}$$

Относительную погрешность измерения массы пара (жидкости) $(\delta(M))$ определяют по формуле:

$$\delta(M) = \sqrt{\delta(V)^2 + \delta_B(M)^2} , \qquad (6)$$

где $\delta \left(V \right)$ –относительная погрешность узла учета при измерении объемного расхода, % (формула 1);

 $\delta_{\!B} \, (M) \, - \,$ предел допускаемой относительной погрешности контроллера при расчете массы, %, *см.п. 1.3.5.*

Относительную погрешность измерения тепловой энергии паровых систем теплоснабжения ($\delta(Q_{\Pi C})$) определяют по формуле:

$$\delta(Q_{\Pi C}) = \sqrt{\delta(M)^2 + \delta_B(Q)^2} , \qquad (7)$$

где $\delta(M)$ - относительная погрешность узла учета при измерении массового расхода пара в подающем трубопроводе, определяемая **по формуле 6.** $\delta_B(Q)$ — предел допускаемой относительной погрешности контроллера при расчете количества тепловой энергии воды (пара), %, **см.п. 1.3.5.**

Все типы датчиков общепромышленного исполнения предназначены для работы во взрывобезопасных условиях. При подключении оборудования во взрывоопасной зоне необходимо руководствоваться действующими нормативными документами и стандартами.

1.3.9 Обеспечение взрывозащиты

Для обеспечения работоспособности узла во взрывоопасной зоне вида **Exd** применяются следующие преобразователи и функциональная аппаратура:

- Датчик расхода взрывозащищенного исполнения Вн. Преобразователь расхода предназначен для работы во взрывоопасных условиях со взрывоопасными смесями подгруппы IIC, имеет вид взрывозащиты «взрывонепроницаемая оболочка» и маркировку взрывозащиты «1ExdIIC(T1-T5)X»;
- Датчик давления с маркировкой взрывозащиты **1ExdIICT6**, для работы во взрывоопасных условиях с взрывоопасными смесями подгруппы **IIC**;
- Датчик температуры с маркировкой взрывозащиты 1ExdIIC(T4-T6)X, для работы во взрывоопасных условиях с взрывоопасными смесями подгруппы IIC;
- Для соединений, ответвлений и протягивания проводов и кабелей во взрывоопасной зоне применяют взрывозащищенные коробки. Коробка взрывозащищенная КР-В-100d имеет маркировку взрывозащиты - 1ExdIICT6.
 Для обеспечения работоспособности узла во взрывоопасной зоне вида Exib,

Ехіа применяются следующие преобразователи и функциональная аппаратура:

- Датчик расхода взрывозащищенного исполнения **ExB**, **ExC**, **ExiaB**. Преобразователь расхода предназначен для работы во взрывоопасных условиях со взрывоопасными смесями подгруппы **IIB**, **IIC**, имеет вид взрывозащиты «искробезопасная цепь» и маркировку взрывозащиты «1ExibIIB(T1-T5)X», «1ExibIIC(T1-T5)X», «1ExiaIIB(T1-T5)X»;
- Датчик давления и температуры имеет маркировку взрывозащиты 1ExiallC(T4-Т6) и применим для работы взрывоопасных условиях с взрывоопасными смесями подгруппы IIC;
- Для защиты датчика температуры применяется барьер искрозащиты БИС-А-107-**Ex**, служащий барьером между искробезопасными и искроопасными

электрическими цепями. Маркировка взрывозащиты - ExialIC;

- Для подключения токового выходов датчиков давления (температуры с аналоговым выходным сигналом) соответственно, используют барьер искрозащиты БИС-А-110-Ex. Барьер применим для работы во взрывоопасных условиях с взрывоопасными смесями подгруппы IIC и имеет маркировку по взрывозащите ExibIIC;
- Для подключения преобразователя расхода по частотному (импульсному) выходу применяют барьер искрозащиты БИС-А-111-**Ex**. Барьер используется для работы во взрывоопасных условиях с взрывоопасными смесями подгруппы **IIB**.

Схемы электрического соединения приборов во взрывоопасной зоне приведены в **Приложении В**.

1.4 УСТРОЙСТВО И РАБОТА

Узел учета является составным изделием и состоит из преобразователя расхода, датчика давления, термопреобразователя сопротивления и вычислителем ТЭКОН-19. Также узел оснащен защитной арматурой и измерительными участками.

В преобразователе расхода реализован метод измерения, основанный на измерении частоты вихрей. В проточной части установлено тело обтекания, которое вызывает образование вихрей в набегающем потоке измеряемой среды. Вихри возникают попеременно вдоль и сзади каждой из сторон тела обтекания. Частота срыва вихрей с тела обтекания пропорциональна скорости потока среды, а, следовательно, пропорциональна объемному расходу измеряемой среды. Эти завихрения вызывают колебания давления измеряемой среды по обе стороны крыла сенсора. Пьезоэлемент, установленный в крыле сенсора, преобразует пульсации в электрические сигналы. Электронный блок формирует выходные сигналы преобразователя после усиления, фильтрации, преобразований и цифровой обработки сигнала.

Сигналы с измерительных датчиков расхода, давления и температуры поступают на расчетно - измерительный преобразователь «ТЭКОН – 19», где производится обработка полученных данных, и вычисление требуемых физических величин. Вычисления проводятся в соответствии с методиками измерений применяемых в ТЭКОН-19.

ТЭКОН-19 обеспечивает связь с ПК для конфигурирования и передачи любых измеренных параметров через встроенный цифровой интерфейс вычислителя CAN-BUS/RS-232 или USB. По требованию заказчика, через интерфейс RS-485, по локальной вычислительной сети Ethernet или по каналам связи общего пользования GSM/GPRS с помощью соответствующих адаптеров, выпускаемых предприятием-изготовителем, и коммуникационного оборудования каналов связи.

1.5 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

1.5.1 Маркировка

Параметры маркировки преобразователей и контроллеров, входящих в состав узла, а также способы ее нанесения см. в Руководстве по эксплуатации на соответствующее изделие.

1.5.2 Пломбирование

Пломбирование производится с целью недопущения несанкционированного доступа к электронному блоку измерительных преобразователей. Пломбирование в узлах учета производится для следующих элементов:

- измерительного преобразователя расхода;
- преобразователя расчетно-измерительного;
- контроллеров.

Способы нанесения пломбирования смотрите в Руководстве по эксплуатации на соответствующее изделие.

1.6 УПАКОВКА

Упаковка узла учета производится в фанерный ящик согласно ГОСТ 9.014. Упаковка обеспечивает защиту средств измерений от климатических и механических повреждений при транспортировании, погрузочно-разгрузочных работах и хранении.

Все датчики, вычислитель и контроллеры, входящие в состав узла учета, упакованы в соответствии с требованиями соответствующих ТУ на эти СИ.

Эксплуатационная документация на узел упакована в полиэтиленовый пакет и уложена в упаковочную тару.

1.7КОМПЛЕКТ ПОСТАВКИ

Узел учета является составным изделием. Комплект поставки узла учета должен соответствовать **таблице 1.6.** Полный состав узла, в исполнении согласно заказу, приведен в Паспорте ЭМИС-ЭСКО2210.00.00 (**Приложение А и Б**).

Таблица 1.6 – Комплект поставки узла учета ЭМИС-ЭСКО 2210

Обозначение	Пояснение
ЭМИС-ЭСКО 2210	Узел учета ЭМИС-ЭСКО 2210 в исполнении согласно заказу (см. п. 1.2.)
ЭМИС-ЭСКО2210.00.00 РЭ	Узел учета ЭМИС-ЭСКО 2210 Руководство по эксплуатации
MΠ 32 -221-2011	Узел учета ЭМИС-ЭСКО 2210 Методика поверки (по заказу)
ЭМИС-ЭСКО2210.00.00 ПС	Узел учета ЭМИС-ЭСКО 2210 Паспорт
Документация на оборудование, входящее в состав узла учета	Руководства по эксплуатации на все средства измерения, входящие в состав узла согласно заказу; Паспорта; Сертификаты соответствия ТР ТС 012 с Ех приложением на СИ и взрывозащищенные кабельные вводы (при установки СИ во взрывоопасную зону); Сертификаты соответствия ТР ТС 004, ТР ТС 020 (на контроллеры, адаптеры, блоки питания); Свидетельства об утверждении типа СИ с приложениями.

При получении узла учета, необходимо:

- проверить состояние упаковки на предмет отсутствия повреждений;
- проверить комплектность поставки;
- сравнить соответствие узла учета спецификации, указанной в заказе. В случае повреждения упаковки, несоответствия комплектности или спецификации счетчика, следует составить акт.

1.8 KAPTA 3AKA3A

Варианты исполнения узла учета представлены в таблице 1.8.

Таблица 1.8 – Карта заказа

Код	0	Наименование и	12ПАПИЯ			
		паименование и	ізделия			
	C-9CKO 2210	Узел учета ЭМИС-ЭСКО 2210				
Код	1	Количество точе	Количество точек учета			
	1	одна точка учета				
	2	две точки учета				
	3	три точки учета				
	4	четыре точки уче	та			
	Х	спец. заказ				
Код	2	Измеряемая сре	да			
	Ж	Жидкость				
	Γ	Газ				
	П	Пар (насыщенны	й/перегретый	1)		
	X	Другое				
Код	3	Требуемая точн		иерении расход	да среды	
	1,5	$1,5\%$ (or $0,1Q_{max}$ <	$Q < Q_{max}$)			
	2,0	2,0%				
	3,0	3,0% (2,6% для га	ı3a)			
	4,0	4,0%				
	5,0	5,0%				
	X	спецзаказ				
Код	4	Максимальное д	цавление изг	меряемой сред	ы (абсолютно	e)
	0,04	0,04 МПа	0,40	0,40 МПа	4,00	4,00 МПа
	0,06	0,06 МПа	0,60	0,60 МПа	6,30	6,30 МПа
	0,10	0,10 МПа	1,00	1,00 МПа	10,00	10,00 МПа
	0,16	0,16 МПа	1,60	1,60 МПа	20,00	20,00 МПа
	0,25	0,25 МПа	2,50	2,50 МПа	X	спец. заказ
Код	5	Диапазон темпе	ратур измер	яемой среды		
	100	от -40 до +100°C		460	от -40 до +46	O° C
	250	от -40 до +250°C		X	спец. заказ	
	320	от -40 до +320°	C			
Код	6	Диаметр преобр	азователя р	асхода		
	015	15 мм	080	80 мм	300	300 мм
	025	25 мм	100	100 мм	350	350 мм(для ЭВ 205)
	032	32 мм	125	125 мм	400	400 мм(для ЭВ 205)
	040	40 мм	50	150 мм		(для ЭВ 205)
	050	50 мм	200	200 мм	2000	2000 мм(для ЭВ205)
	065	65 мм	250	250 мм	X	спец. заказ
Код	7	Диаметр трубоп	ровода прис	оединительнь	ій	
	015	15 мм	080	80 мм	300	300 мм
	025	25 мм	100	100 мм	350	350 мм
	032	32 мм	125	125 мм	400	400 мм
	040	40 мм	150	150 мм		
	050	50 мм	200	200 мм	2000	2000 мм
	065	65 мм	250	250 мм	X	спец. заказ
		OU WIW		_00 WWW		

Код	8	Взрывозащита		
код	0			
	-	Общепромышленного исполнения		
	Exd	Взрывозащищенное исполнение измерительных преобразователей вида взрывонепроницаемая оболочка		
	Exi	Взрывозащищенное исполнение измерительных преобразователей вида искробезопасная цепь Ехі		
	X	спец. заказ		
Код	9	Материал трубопровода		
	Н	Нержавеющая сталь		
	Ст	Углеродистая сталь		
	09Г2С	Сталь 09Г2С		
	X	спец. заказ		
Код	10	Шкаф		
	МШ	Монтажный шкаф для установки функциональной аппаратуры и контроллеров		
	ШТ	Шкаф трубный с отделением для установки узла у ета и отсеком для установки функциональной аппаратуры		
	што	Шкаф трубный, обогреваемый, для эксплуатации узла в «суровых» зимних условиях		
	ШШ	Шкаф трубный со встроенным шкафом		
	-	Не требуется		
	X	Спец. заказ		
Код	11	Интерфейс передачи данных		
	-	RS - 232 (USB)/CAN-BUS		
	GPRS/GSM	GPRS/GSM		
	RS - 485	RS - 485		
	E	Ethernet		
	X	спец. заказ		
Код	12	Поверка		
	-	Заводская		
	ГΠ	Государственная поверка		
Код	13	Требуемое ПО		
	-	ПО для локального сбора данных (ПО Телепорт)		
	И	Диспетчерский программный комплекс "ИСКРа" для удаленного сбора данных		
	С	Интеграция данных в SCADA верхнего уровня		
Код	14	Наличие соединительного кабеля до вычислителя		
	ДХ	кабель ("Х"- необходимая длина кабеля, м)		
l/o-	45	Не требуется		
Код	15	Измерительные участки		
	10/5	10 Ду перед прибором, 5 Ду после прибора (стандартное исполнение)		
	- V	Поставка измерительных участков не требуется		
l/o-	X 16	спец.заказ		
Код	16 B	Контроль качества сварных соединений измерительных участков		
	В	Визуально-измерительный контроль - 100%		
	X	Химический метод контроля - 100%, визуально-измерительный контроль - 100% Ультразвуковой контроль - 100%, (согласно ВСН 012-88), визуально		
	У3	измерительный контроль - 100%		

Пример заполнения карты заказа:

ЭМИС-ЭСКО 2210 -

Запись при заказе ЭМИС-ЭСКО 2210 - 1 - Ж - 1,5 - 1.60 - 100-150/200 - Exib - Ст - МШ -

- GPRS/GSM - ГП - И - Д15 - 10/5 - В

Расшифровка обозначения:

ЭМИС-ЭСКО 2210 - 1 - Ж - 3.0 - 1.60 - 100-150/200 - Ex - CT - MU - GPRS/GSM - $\Gamma\Pi$ - U

2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

2.1.1 Общие указания

К монтажу, эксплуатации, техническому обслуживанию узла учета должны допускаться лица, изучившие настоящее РЭ и Эксплуатационную документацию на изделия входящие в состав узла учета, а также прошедшие инструктаж по технике безопасности при работе с электротехническими устройствами.

Все операции по эксплуатации и поверке узла учета необходимо выполнять с соблюдением требований по защите от статического электричества. Указания мер безопасности при монтаже и эксплуатации измерительных преобразователей и контроллеров приведены в РЭ на конкретное изделие.

При проведении монтажных, пуско-наладочных работ и ремонта запрещается:

- подключать измерительные преобразователи и контроллеры к источнику питания с выходным напряжением, отличающимся от указанного в настоящем РЭ;
- использовать электроприборы, электроинструменты без их подключения к шине защитного заземления, а также в случае их неисправности;
- установка и эксплуатация узлов учета в условиях превышения предельно допустимых параметров давления и температуры измеряемой среды;

При проведении монтажных работ опасными факторами являются:

- напряжение питания переменного тока с действующим значением 220В и выше, частотой 50 Гц (при расположении внешнего источника питания в непосредственной близости от места установки);
- избыточное давление измеряемой среды в трубопроводе;
- повышенная температура измеряемой среды;
- токсичность измеряемой среды.

2.2 ТРЕБОВАНИЯ К МОНТАЖУ

Перед монтажом необходимо ознакомиться с настоящим РЭ, РЭ на все изделия, входящие в состав узла учета, с действующими нормативными документами и стандартами. Все измерительные преобразователи должны быть осмотрены. Необходимо обратить внимание на предупредительные надписи, маркировку взрывозащиты и ее соответствие классу взрывоопасной зоны, проверить состояние взрывозащищенных элементов, предупредительные надписи, отсутствие повреждений преобразователя, наличие заземляющего зажима, наличие средств уплотнения для кабеля и крышек, состояния подключаемого кабеля.

Запрещается проводить монтаж преобразователей, контроллера и всей функциональной аппаратуры при параметрах процесса, значения которых превышают заданных в руководствах по эксплуатации на соответствующие изделия и узел в целом.

2.2.1 Выбор места установки

При выборе места установки узла учета на трубопровод необходимо руководствоваться следующими обязательными правилами:

- к узлу учета должен быть обеспечен свободный доступ;
- место установки узла учета должно исключать его механическое повреждение при эксплуатации;
- в случае поставки узла учета без комплекта измерительных участков место установки на трубопроводе должно выбираться таким образом, чтобы до и после преобразователя расхода соблюдалось требования к длинам прямых участков в соответствии РЭ «ЭМИС-ВИХРЬ 200», п.2.2.2.:
- место установки узла должно выбираться с учетом удобства прокладки и минимальной длины кабельных линий до регистрирующей аппаратуры;
- не допускается устанавливать узел учета в затапливаемых помещениях;
- установка узла учета в зоне расположения устройств, создающих вокруг себя мощное магнитное поле (например, силовых трансформаторов), не допускается;
- узел учета необходимо устанавливать на участке трубопровода с максимально низким уровнем вибраций, не превышающий требования всех компонентов узла (см. Руководство по Эксплуатации на конкретное изделие).

2.3 МОНТАЖ УЗЛА УЧЕТА

Установку узла учета на трубопровод проводят в следующей последовательности. При монтаже измерительных преобразователей, контроллеров и функциональной аппаратуры, необходимо пользоваться руководством по эксплуатации на соответствующее изделие.

2.3.1 Монтаж преобразователя расхода ЭВ-200.

Собрать узел из измерительных участков и преобразователя с помощью шпилек и гаек (в случае, если соединение с трубопроводом типа «сэндвич») (см. *рисунок 2.1*) или болтов и гаек (в случае, если соединение преобразователя расхода с трубопроводом фланцевое).

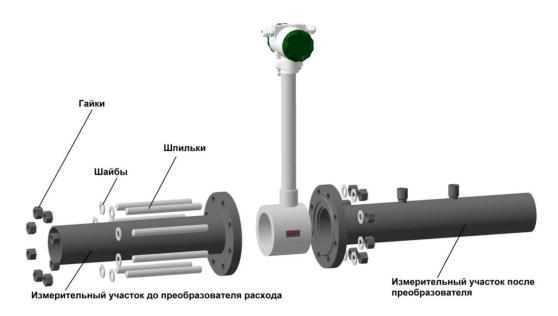
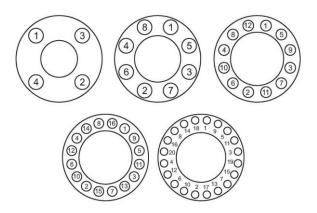
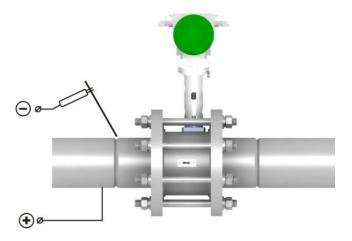
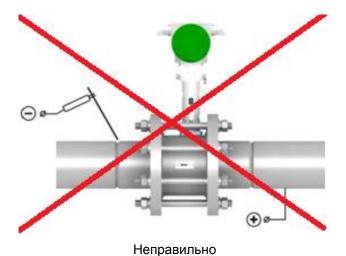



Рисунок 2.1 – Сборка преобразователя расхода

Затяжку крепежа рекомендуется производить поочередно по диаметрально противоположным парам болтов (см. *рисунок 2.2*).


Рисунок 2.2 – Последовательность затяжки болтов фланцев

Приварите собранный узел к трубопроводу, как показано на рисунке 2.3.


ВНИМАНИЕ!

При монтаже с использованием электродуговой сварки источник тока присоединять таким образом, чтобы сварочный ток не протекал через преобразователь.

Правильно

Рисунок 2.3 – Приварка измерительных участков и преобразователя к трубопроводу

При ограниченном пространстве и большом диаметре трубопровода не всегда возможно выполнить рекомендации по длинам прямых участков. В этом случае рекомендуется применить выпрямитель потока ЭМИС — ВЕКТА 1200, который позволяет уменьшить длину входного участка до 8 Ду (для вихревого преобразователя). Выпрямитель потока эффективно выпрямляет профиль потока с некоторой потерей давления. Размеры выпрямителя см. РЭ «ЭВ 200».

При установке струевыпрямителей в узлы учета на базе диафрагм, необходимо руководствоваться ГОСТ 8.586.2.

2.3.2 Монтаж преобразователя давления и температуры

Преобразователи давления и температуры необходимо монтировать на измерительном участке ниже по потоку после преобразователя расхода в посадочные отверстия, как показано на *рисунке 2.4*.

Место установки преобразователей определены бобышками (или отверстием под отборное устройство) на измерительном участке, поставляемом в комплекте с узлом учета.

Рисунок 2.4 — Схема монтажа преобразователя давления и преобразователя температуры

В том случае, если измерительные участки не входят в комплект поставки узла учета, то преобразователь давления должен устанавливаться на расстоянии не более 5 Ду от преобразователя расхода ниже по потоку, а преобразователь температуры — на расстоянии 4...6 Ду от преобразователя расхода ниже по потоку. При этом место установки преобразователей на измерительном участке должны обеспечивать удобные условия обслуживания и монтажа.

Преобразователь давления вместе с клапанным блоком устанавливается в бобышку, ввариваемую в трубопровод в посадочное отверстие согласно *рисунку 2.5*. При поставке узла учета с отборным устройством, сначала на участок трубопровода вваривается отборное устройство в комплекте с шаровым краном, после чего устанавливается датчик давления.

После установки преобразователя давления корпус необходимо заземлить, для чего отвод сечением не менее 1 мм^2 присоединить к контакту $\stackrel{+}{=}$ разъема на корпусе


Все крепежные элементы должны быть затянуты, съемные детали должны прилегать к корпусу плотно, насколько позволяет это конструкция преобразователя давления.

Монтаж датчика температуры на трубопровод осуществляется при помощи защитной гильзы, которая устанавливается в бобышку, ввариваемую в трубопровод в посадочное отверстие, согласно *рисунку 2.4*.

Работоспособность измерительных преобразователей узла учета проверена на предприятии-изготовителе. Все приборы поставляются в работоспособном состоянии и имеют соответствующие отметки в паспортах.

Заводская установка диапазонов измеряемых давлений указана в паспорте на датчик давления. Преобразователь давления по умолчанию настроен на требуемый предел измерения, согласно опросному листу и требованиям заказчика.

В том случае, если какой-либо из изделий работает некорректно рекомендуется проверить работоспособность прибора согласно указаниям, приведенным в РЭ на конкретное изделие.

2.3.4 Монтаж контроллеров, блока питания, барьеров искрозащиты

Вся функциональная аппаратура, контроллеры и вычислитель устанавливаются на DIN-рейку NS 35/7,5 в соответствии с правилами устройства электроустановок. Рекомендации по установке аппаратуры на рейку см. в Руководстве по Эксплуатации на соответствующее изделие.

Если узел учета поставляется вместе с монтажным шкафом контрольно измерительной аппаратуры (удаленного исполнения), все элементы устанавливаются на DIN-рейку, установленную в шкафу (*см. рисунок 2.5*).

В монтажном шкафу имеется:

- кабельный ввод для подведения проводов с измерительных преобразователей и кабеля для подключения вычислителя к ПК;
- два поворотных замка под ключ с двойной бородкой;
- кронштейны для настенного монтажа.

Для просмотра параметров с индикатора вычислителя, на двери имеется обзорное окно.

Рисунок 2.5 – Внешний вид монтажного шкафа с установленной аппаратурой.

2.4 ЭЛЕКТРИЧЕСКОЕ ПОДКЛЮЧЕНИЕ

Подключение внешнего источника питания, измерительных преобразователей, барьеров искрозащиты, коробки взрывозащищенной, магистрали обмена и выходов питания для гальванически изолированных цепей осуществляется к разъемным клеммам под винт для удобства демонтажа в процессе отладки системы и при периодической поверке. Для монтажа рекомендуется применять кабель **мкэш, кввгэ, кввгэнг** по ГОСТ 10348 (или аналогичный) с необходимым числом жил сечением не менее 0,5 мм². Все электрические подключения необходимо выполнять по действующим нормативным документам и стандартам.

2.4.1 Назначение клемм

Назначение клемм и наименование цепей приведено в **таблице 2.1**. При обозначении полярности подключения измерительных преобразователей символом «+» обозначен вытекающий ток из ТЭКОН-19-05, символом «-» обозначен втекающий ток. Расположение и порядок нумерации клемм показаны на **рисунке 2.6**.

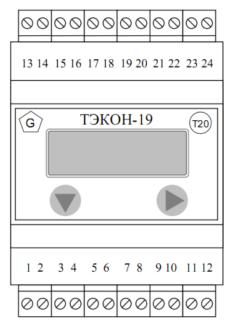


Рисунок 2.6-Внешний вид передней панели и нумерация клемм ТЭКОН-19-05

Таблица 2.1 – Назначение клемм и наименование цепей

Сигнал и маркировка на корпусе		Цепь и ее обозначение на схемах		№ клеммы
Измерительный		Токовая цепь	J_R0+	8
канал	T0	токовал цень	J_R0 -	5
сопротивления		Измерительная	U_R0+	7
№ 0		цепь	U_R0 -	6
Измерительный	U _⊓ 0	Выход источника питания	U _⊓ 0+	-
канал силы тока № 0			U _⊓ 0-	-
	J0	Измерительная цепь	U _J 0+	16
			U _J 0-	15
Группа	Uпд1	Вход источника питания	U _{⊓Д} 1+	24
измерительных			U _{ПД} 1-	23
каналов частоты			F0+	22
и количества импульсов, № 0	F0	F0 Вход ИК № 0	F0-	21
Uπ		Выход источника	U _⊓ +	12
ОП		питания	U _⊓ -	11
CAN		Магистраль CAN- BUS	Н	10
CAN			L	9

Питание ТЭКОН-19-05М выполняется подключением внешнего источника постоянного тока ЭМИС-БРИЗ 90-24-4-100 к клеммам « $U_{\Pi 0}$ », « $U_{\Pi Д1}$ ». Питание должно подключаться только после завершения монтажа всех остальных цепей. В электрооборудование здания должен входить выключатель или автомат защиты, устанавливаемый в монтажном шкафу вблизи ТЭКОН-19-05М и его источника питания, имеющий маркировку как отключающее устройство в соответствии с ГОСТ 51350. Монтаж и демонтаж ТЭКОН-19-05М и его внешних цепей следует проводить при отключенном электропитании самого преобразователя и всех подключаемых к нему устройств.

2.4.2 Подключение измерительных преобразователей к ТЭКОН-19-05

Подключение измерительных преобразователей, внешнего источника питания, функциональной аппаратуры осуществляется по одной из схем подключений, приведенных в *приложении В*, согласно *таблице 2.1*. По дополнительному заказу, в комплекте с узлом учета поставляется соединительный кабель.

Подключение измерительных преобразователей к ТЭКОН-19-05:

- Подключение измерительных преобразователей давления производится к ИК силы тока с маркировкой IO. Подключение выполнять по схеме, *приложение В*, к клеммам с номерами, приведенными в *таблице 2.1*. Подключение узла вида Exi во взрывоопасной зоне осуществляется с помощью барьеров искрозащиты БИС-A-110-Ex.
- Подключения преобразователя расхода выполняют по двухпроводной схеме путем соединения одноименных цепей измерительных преобразователей с клеммами ТЭКОН-19-05, имеющими маркировку «F0» с соблюдением полярности согласно *приложения В*, к клеммам с номерами, приведенными в *таблице 2.1*. Соединение с блоком питания во взрывоопасной зоне Exi осуществляется с помощью барьера искрозащиты БИС-А-111-Ex по схеме 5 (*Приложение B*).

ИК объединены в группы (см. *таблицу 2.1*), в каждой из которых предусмотрен один вход питания на все каналы группы. При подключении измерительных преобразователей к группе ИК, на вход питания группы необходимо подключить напряжение (12-24)В постоянного тока от внешнего изолированного источника питания. При этом все каналы внутри группы оказываются гальванически связаны между собой, но гальванически изолированы от ИК другой группы и цепи питания преобразователя.

Допускается объединять цепи питания группы ИК с цепью питания преобразователя с соблюдением полярности при условии соблюдения характеристик источников питания. В этом случае измерительные цепи всех измерительных преобразователей будут гальванически связаны между собой и с цепью питания преобразователя.

2.4.3 Подключение контроллера к ПК

Вычислитель ТЭКОН 19-05 подключается к ПК с помощью сервисного интерфейса RS-232 посредством кабеля RS-232 или по магистрали CAN.

- В случае удаленного подключения к узлу учета для снятия показаний посредством GPRS канала, контроллер подключается к компьютеру посредством контроллера GSM/GPRS K-105.
- В случае передачи данных через интерфейс RS-485, вычислитель подключается к ПК посредством адаптера AИ-80 (по протоколу FT1.2) или по УСП-78 (по протоколу Modbus RTU).

Способ подключения к ПК см в Руководстве по Эксплуатации на соответствующий контроллер.

2.4.4 Подключение внешних модулей CAN

Подключение к магистрали обмена информацией CAN BUS осуществляется соединением клемм CAN L и CAN H с одноименными шинами магистрали. Номера клемм для подключения приведены в *таблице 2.1*.

Топология магистрали должна удовлетворять схеме типа «Общая шина». На двух преобразователях, находящихся на противоположных концах магистрали, необходимо установить перемычку "TERM", расположенную под клеммами CAN L и H, на всех остальных преобразователях, подключенных к этой магистрали, перемычки должны быть обязательно удалены. Нормальная работа системы обмена данными по магистрали, построенной по топологиям «Звезда», «Куст» и др. не гарантируется.

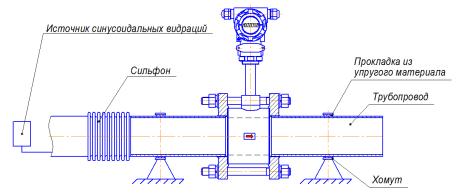
2.4.5 Проверка работоспособности ТЭКОН — 19-0М После подключения к контроллеру ТЭКОН-19-05 всех измерительных преобразователей, источника питания необходимо проверить работоспособность узла учета.

Для проверки работоспособности ТЭКОН-19-05 необходимо убедиться, что на жидкокристаллическом дисплее контроллера отображаются измеряемые параметры.

2.5ПУСКО - НАЛАДКА

2.5.1 Настройки контроллера ТЭКОН в составе узла учета ЭМИС-ЭСКО 2210

На предприятии-изготовителе контроллер ТЭКОН-19-05М сконфигурирован под конкретные параметры технологического процесса с учетом опросных листов, полученных от Заказчика.


При возникновении необходимости произвести перенастройку контроллера необходимо обратится к РЭ контроллера, а также к инструкции по работе с программным комплексом «ТЕЛЕПОРТ».

2.5.2 Устранение эффекта «самохода» в процессе пусконаладки Если после установки преобразователя расхода на трубопровод на частотном выходе преобразователя расхода при отсутствии расхода измеряемой среды появляются импульсы, то это может означать, что вибрация трубопровода приводит к возникновению эффекта «самохода».

Для устранения эффекта «самохода» необходимо обратиться к соответствующему пункту Руководства по эксплуатации «ЭВ-200».

Если влияние вибрации указанными выше способами устранить не удается, рекомендуется крепить трубопровод хомутами к бетонному или аналогичному основанию с прокладкой из упругого материала (например, техническая резина толщиной 10 мм), способного гасить вибрацию.

Дополнительно могут быть использованы другие способы компенсации воздействия вибрации. Например, установка на трубопроводе сильфона со стороны источника вибрации, использование резинового участка трубопровода (при условии, что будет выдержано рабочее давление среды) и т.д.

Рисунок 2.7 – Закрепление трубопровода После закрепления трубопровода проверить отсутствие «самохода».

3. РЕГЛАМЕНТНОЕ ОБСЛУЖИВАНИЕ

Регламентное обслуживание узла учета ЭМИС – ЭСКО 2210 проводится согласно **таблице 3.1**.

Таблица 3.1 – Порядок регламентного обслуживания узла учета ЭМИС-ЭСКО 2210

Наименование изделия	2 раза в год	4 года	
Преобразователь расхода ЭМИС-ВИХРЬ 200	РЭ «ЭВ-200»	-	
Преобразователь давления	Согласно РЭ		
Преобразователь давления	на изделие	-	
Преобразователь температуры	Согласно РЭ	_	
преобразователь температуры	на изделие		
Контроллер ТЭКОН-19-05	_	РЭ «ТЭКОН	
Non-possicp Tollori 15-05		19»	

4. ПОВЕРКА

Порядок первичной и периодической поверок приведен в методике поверки МП 32-221-2011, поставляемой в комплекте с узлом учета.

Первичной поверке подлежат узлы учета до ввода в эксплуатацию и после ремонта. Поверка узла учета проводится поэлементно, порядок и периодичность поверки измерительных преобразователей и ТЭКОН–19, входящих в состав комплекса определены Эксплуатационной документацией на соответствующее изделие. Допускается проводить замену неисправных преобразователей однотипными поверенными без поверки всего узла, при этом делается отметка в паспорте.

Интервал между поверками – 4 года. При проведении поверки средств измерений, входящих в состав ЭМИС–ЭСКО 2210, применяют средства измерений и оборудование, указанные в РЭ на соответствующее СИ. Метод поверки узла учета – расчетный.

5. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1 Транспортирование

При транспортировании узла учета рекомендуется соблюдать следующие требования:

- узел учета в транспортной упаковке предприятия-изготовителя транспортируется любым видом транспорта в соответствии с условиями 5 по ГОСТ 15150;
- транспортирование узла учета в упаковке предприятия-изготовителя может проводиться любым видом транспорта в соответствии с правилами перевозки грузов этого вида транспорта. Срок пребывания в условиях транспортировки не более 1 месяца;
- способ укладки ящиков на транспортирующее устройство должен исключать возможность их перемещения;
- во время погрузочно-разгрузочных работ и транспортирования ящики не должны подвергаться резким ударам и воздействию атмосферных осадков.

5.2 Хранение

Длительное хранение узла учета рекомендуется производить только в упаковке предприятия – изготовителя. Преобразователи после распаковывания должны храниться на стеллажах в закрытом помещении. Условия в распакованном виде – 1 по ГОСТ 15150.

Дополнительные требования по хранению изделий см. в РЭ на соответствующее СИ.

6. УТИЛИЗАЦИЯ

Узел учета не содержит вредных веществ и компонентов, представляющих опасность для здоровья людей и окружающей среды в процессе и после окончания срока службы и при утилизации.

Утилизация узла учета осуществляется отдельно по группам материалов: пластмассовые элементы, металлические элементы корпуса и крепежные элементы.

ПРИЛОЖЕНИЕ А

Перечень ссылочных документов (справочное)

	(справочно		
Обозначение документа	Наименование		
FOCT 6651-2009	Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний		
FOCT 30852.0-2002	Электрооборудование взрывозащищенное. Часть 0. Общие требования		
ΓΟCT 30852.1-2002	Электрооборудование взрывозащищенное. Часть 1. Взрывозащита вида "взрывонепроницаемая оболочка"		
ΓΟCT 30852.9-2002	Электрооборудование взрывозащищенное. Часть 10. Классификация взрывоопасных зон		
ΓΟCT 30852.10-2002	Электрооборудование взрывозащищенное. Часть 11. Искробезопасная электрическая цепь і		
FOCT 30852.13-2002	Электрооборудование взрывозащищенное. Часть 14. Электроустановки во взрывоопасных зонах (кроме подземных выработок)		
ПУЭ	Правила устройств электроустановок		
пээп	Правила эксплуатации электроустановок потребителей		
ГОСТ Р 8.740-2011	«Расход и количество газа. Методика измерений с помощью турбинных, ротационных и вихревых расходомеров и счетчиков»		
ГСССД МР 113-03	Определение плотности фактора сжимаемости, показателя адиабаты и коэффициента динамической вязкости влажного нефтяного газа в диапазоне температур 263500К при давлениях до 15МПа		
ГСССД МР 118-05	Определение плотности фактора сжимаемости, показателя адиабаты и коэффициента динамической вязкости умеренно сжатых газовых смесей		
ГСССД МР 134-07	Определение плотности фактора сжимаемости, показателя адиабаты и коэффициента динамической вязкости азота, ацителена, кислорода, диоксида углерода, аммиака, аргона и водорода в диапазоне температур 200425 К и давлении до 10МПа		
FOCT 30319.2-2015	Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о плотности при стандартных условиях и содержании азота и диоксида углерода		

ПРИЛОЖЕНИЕ Б

Габаритные размеры (обязательное)

Общая длина узла L получается путем сложения общей длины преобразователя расхода (габаритные размеры приведены в РЭ на **ЭМИС-ВИХРЬ 200**), прямых участков до и после установки преобразователя расхода, за вычетом 5 мм.

 $L = L_{\partial o} + L_p + L_{nocne} - 5$ MM.

В стандартном исполнении, длины измерительных участков составляют: $L_{do}=10 \cdot \mathcal{A}_{v}$; $L_{nocne}=5 \cdot \mathcal{A}_{v}$.

Lp – длина расходомера ЭМИС-ВИХРЬ 200 «сэндвич» или фланцевого исполнения. На рисунке 1 представлен пример расчета габаритных размеров узла на базе расходомера ЭМИС-ВИХРЬ 200 исполнения «сэндвич».

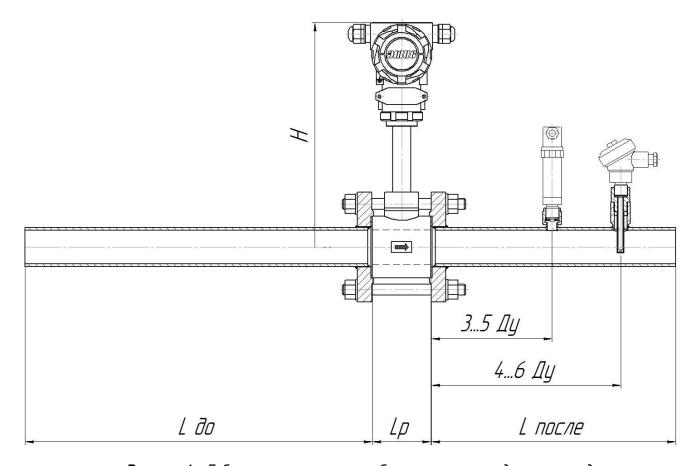
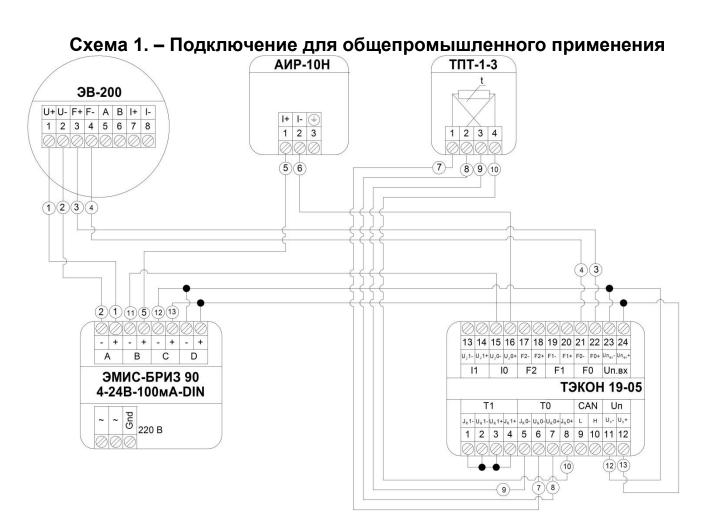



Рисунок 1 – Габаритные размеры преобразователя расхода типа «сэндвич».

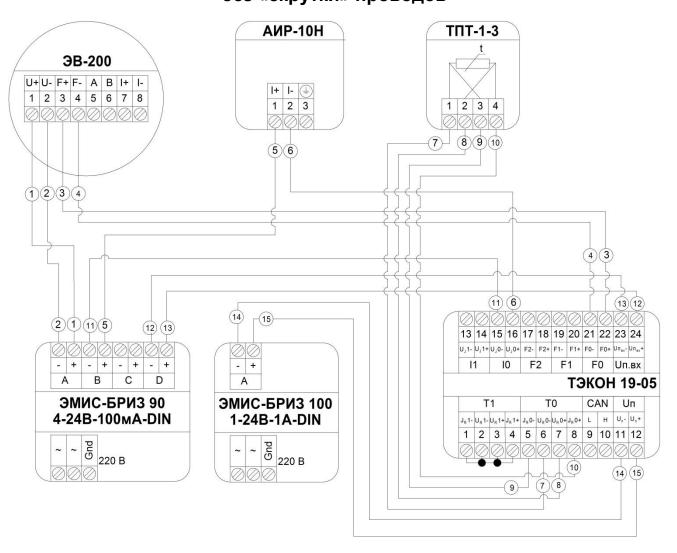

ПРИЛОЖЕНИЕ В

Схема электрических соединений (обязательное)

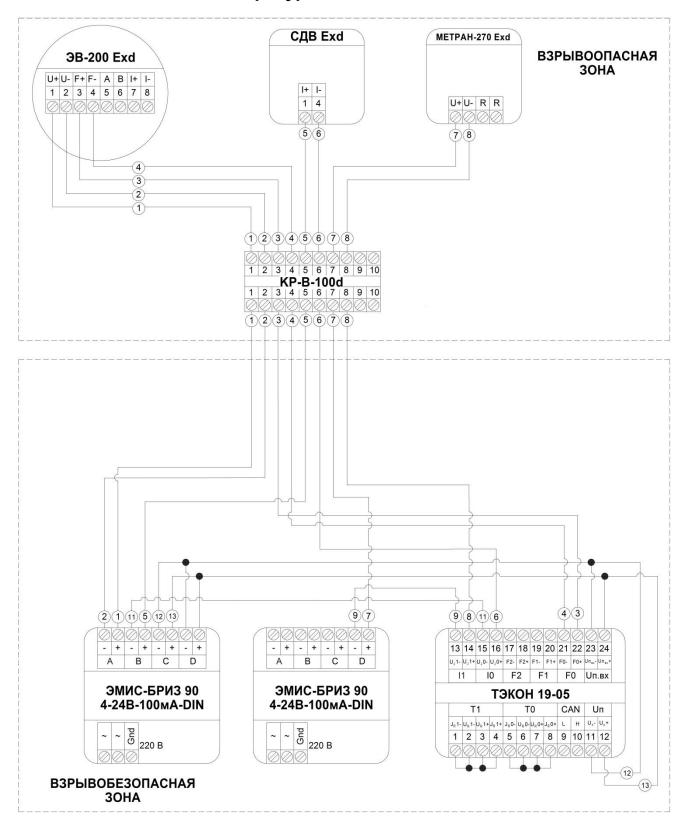
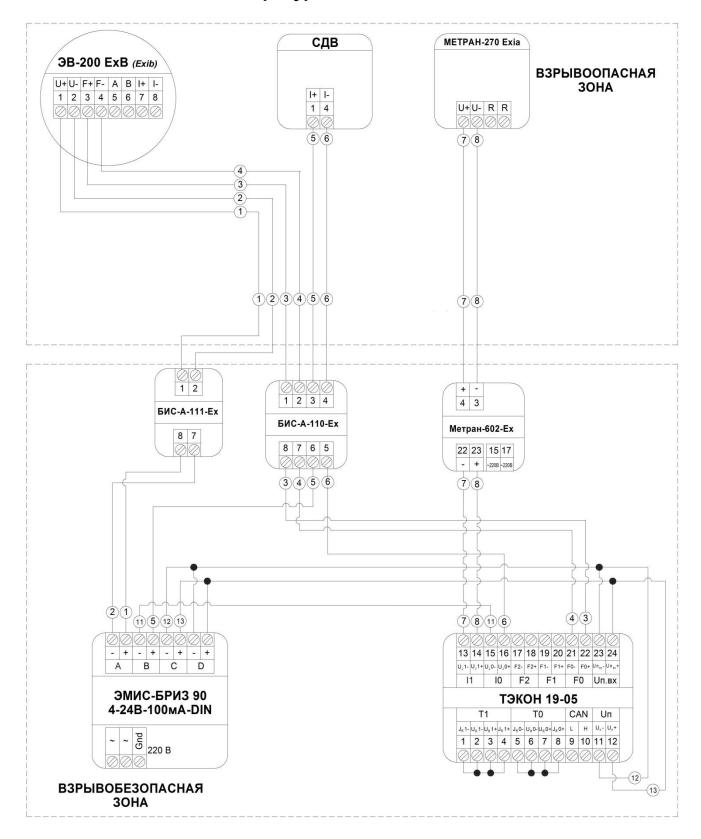
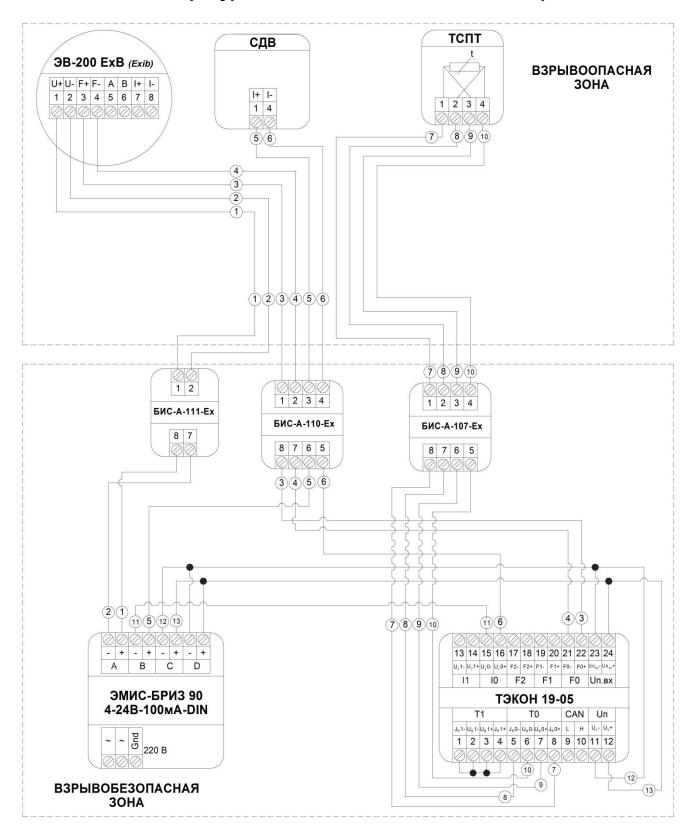


Схема 2. – Подключение для общепромышленного применения, без «скрутки» проводов

Схема 3. – Подключение узла типа Exd во взрывоопасной зоне с датчиком температуры с выходным сигналом 4-20

Схема 4. – Подключение узла типа Exi во взрывоопасной зоне с датчиком температуры с выходным сигналом 4-20

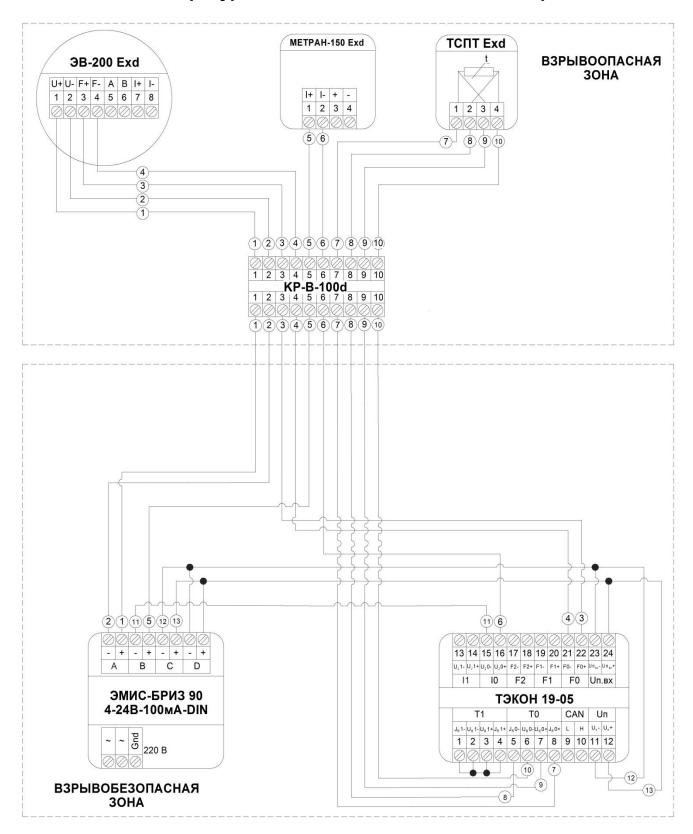


Схема 5. – Подключение узла типа Ехі во взрывоопасной зоне с датчиком температуры с выходным сигналом по сопротивлению

Схема 6. – Подключение узла типа Exd во взрывоопасной зоне с датчиком температуры с выходным сигналом по сопротивлению

	Лист регистрации изменений № Дата Автор Содержание Причина				
Nº	Дата	Автор	Содержание	Причина	
			-		

